
(Continued from previous chapter)

---===< When MacsBug won't work >===---

But, as usual, life ain't always so simple! A lot of applications
won't allow you to use a-traps to crack them. I think they take
away memory from MacsBug or something. To crack these you have to
take a different approach!

The first thing to do is to make sure that none of the useful a-
traps work. Not every program uses the a-trap ModalDialog, for
example. So try some of the other a-traps I listed in the
previous part of The Ultimate Mac Cracking Guide! I've seen, for
example, a guy who rewrote all a-traps dealing with getting info
from dialogs. Everything except the CloseDialog a-trap. So I
caught him with that!

Another approach is to use the InitGraf a-trap. This a-trap is
usually called by the program in the beginning while it's being
initialized. If you call this, you'll have to step through the
code until it reaches the subroutine dealing with registration,
and then take it from there.

An a-trap that I am not very fond of myself is TEKey. This a-trap
is used when getting text information from dialogs (among
others). The problem with it is that it is very tedious to get
out of it! It is very difficult to find your way back to the
registration subroutine! But if you have a lot of time on your
hand then go ahead, use it! This a-trap will almost certainly
work under any conditions!

So, you've tried every a-trap you could think of, but you just
won't be dropped into MacsBug! This is the point where you'll
have to disassemble the program and follow through the code!
Since I'm too cheap to by any of the commercial disassemblers, I
will use Super ResEdit, with it's code editing feature.

The first question is "where do I start?" Well here's a hint,
when a dialog is displayed on the screen, usually (unless the
author doesn't use a-traps at all) the resource ID number of the
registration dialog is pushed onto the stack and followed by a
GetNewDialog a-trap. So now we know what to look for!

Open up the application you wanna crack with Super ResEdit, and
have a look in the resources dealing with dialogs. You wanna find
the dialog which is used by the application to get your
registration information! When you've found it write down it's ID

number. For example, in CrackIt the dialog box responsible for
getting registration info has ID number 128. Now, convert 128
into hex (=80). Now open up the CODE resource and in the case of
CrackIt open up resource ID 1 . Activate the hex editor window
and search for the hex string "0080". Why 0080 and not just 80?
Because you gonna find a hell of a lot more 80's than 0080's!

Oh yeah! Before I forget. Some applications have a LOT of code
resources. And unfortunately you'll have to go through each one
of them and search for 0080. And also, make sure you're searching
for a hex string not an ASCII string!

So anyway, once you've found 0080, activate the code editor
window. And you should see one of the subroutines dealing with
putting up the registration dialog box before you. This is great,
but how do I find the registration subroutine? If you'd care to
click on the "Addr" value of the first command in Annon 25, then
you'll be able to find, from the Goodies menu, which instructions
will branch to that specific command! This is a very useful
feature that you'll be using quite a lot!

And after that it's just to follow through the code like you
would in MacsBug. Unfortunately it is not as simple as stepping
through something with MacsBug, since you can't have a look at
what's happening to the different registers.

I have seen programs that don't use dialogs to get the
registration information! In this case you should check under the
"ALRT" resource. If the programmer is really paranoid he/ she
might create an own resource where he stores the data for the
registration dialog box. In this case...uhm look for the ID of
this resource?

And if you can't decide which dialog box the program uses for
registration, then have a look in the "STR#" resource or in the
resources dealing with strings. Here you're looking for the ID of
the resource which contains the text that is displayed in the
registration dialog.

Remember one thing, however! Try to narrow down your search by
using MacsBug! If you can, then try to break into the
registration procedure with any a-trap. Remember, the point is to
get to the main registration routine, and it doesn't matter how
the hell you get there! There are no rules! There are only "easy
ways" and "not so easy ways" to crack programs. It's up to you
how you do it!

Oh yeah! And before I forget! Some people label their
subroutines! And some people use labels such as "Registration".
So when you have the code editor window active in Super ResEdit
and you see under the Modules menu that one of the subroutines is
called "Registration", then don't bother looking for ID numbers
and shit like that! Go to the subroutine straight away!

---===< Other Types Of Protection >===---

At this point Part 3 is over 4500 words long and I feel that this
is enough info for another part. But HA 12 being the last issue
and all, I will describe how to crack other protection system
very briefly!

- Date Expiration Schemes: Programs protected with these kinds of
protection are usually demos designed only to last for a month or
so. They will most likely compare the current date to the date
stored in the preferences file (or in the data/resource fork),
and then branch accordingly. Therefore, the easiest way to
defeating time protected demos is to simply turn the date back in
the "Date & Time" control panel. But if you wanna crack the
program the complicated way you wanna look for a-traps again. The
a-traps to look for are: GetDateTime, Random and TickCount. The
last two a-traps would be used if the program didn't call the
time check routine at startup but at random times during the time
it's running. And if that is the case, you are best off if you
change the code with Super ResEdit! Again somewhere the program
NEEDS to use a CMP or a TST command, to see if the time actually
has expired or not. So keep your eyes open for those!

- Key disk protection: You know that this is the protection
system, if the program asks for a disk (or a CD) in order to be
able to start up. The way this protection would work, is that
somewhere in the program, the disk will be checked for either an
invisible file, or a bad bitmap (bad block). Now, in order for
the program to see if the bad block exists, it has to attempt to
read from the disk itself. The a-traps for the Device and File
managers are: Open, Close, Read, Write, Control, Status, KillIO,
GetVolInfo, Create, Delete, OpenRF, ReName, GetFileInfo,
SetFileInfo, UnMountVol, MountVol, Allocate, GetEOF, SetEOF,
FlushVol, GetVol, SetVol, FInitQueue, Eject, GetFPos, HSetVol,
HGetVol, HOpen, HGetVInfo, HCreate, HDelete, HOpenRF, HRename,
HGetFileInfo, HSetFileInfo, AllocContig, HSetFLock, HRstFLock.
Have fun finding the correct one! After finding the correct a-
trap, there will most likely be a conditional seeing whether the
file (bad block) existed or not, and if it did then you're in the

clear! On the other hand if the program needs an invisible file
on the disk, then you will have to copy that invisible file to
another disk if you wanted to use two copies of the program. But
again, the possibilities are endless, and it's up to you to
figure them out and to defeat them!

Hardware Key Protection: The most difficult of them all, but not
undefeatable! And I know this for a fact ;-) Hardware Keys are
usually hooked up to the ADB port (keyboard). The program then
searches for data stored within the key. Now, the only way to
defeat this is to go through each and every instruction asking
data from the key and then changing the code accordingly. If you
want a nice project to work on, I can recommend you to design a
program that will "suck" the contents out of hardware keys.
Meaning that it will display all information stored within the
key. Until that happens though you will have to trace through
the code manually looking for places where the program asks the
key for a value. In my list of a-traps these are the ones I found
that had to do with ADB: ADBReInit, CountADBs, GetIndADB,
GetADBInfo, SetADBInfo, ADBOp. This is not much, I know, and I
don't even know if these will work. So it's up to you to find
out!

---===< The End >===---

This is it folks. If you've managed to read all three parts of
The Ultimate Mac Cracking Guide, then you deserve a medal! I've
tried to cover things in detail, but there are things that I just
simply couldn't include. If things go according to plan there
will be a "proper" PPC cracking guide coming out in a couple of
months! But by then we won't have HackAddict to publish in. So
just keep your eyes open on other locations!

And before I disappear into cyberspace I think it is time to say
"Thank you!" to The Weasel! He's done something remarkable! He
created a place where a group of people sharing the same dreams
could meat and exchange ideas! His name shall be with us
forever, and take the highest place on the "Hackintosh Hall of
Fame"!

ProZaq

